高分秘籍|CNS主刊文章原来这样写!(上)

1 月 6, 2023

首页 > Biacore > 知识资源中心 > CNS合集 > 高分秘籍|CNS主刊文章原来这样写!(上)
随着新年钟声的敲响,2023已悄然而至。站在岁初,回顾往昔,不凡的2022始于全球瞩目的北京冬奥会,终于防疫政策的优化使得我们逐步恢复了烟火日常。而聚焦科研领域, 作为分子互作“金标准”的Biacore在2022年也有诸多高光时刻,凭借无可比拟的检测性能和广泛的应用方向,为科研工作者提供了高质量、丰富的实验数据。
2022年全球科研工作者借助Biacore在CNS主刊上发表了近50篇文章,研究内容涉及新冠、植物科学、免疫、神经科学、结构学等多个热门领域。我们将分为上下两篇向大家展示Biacore的神通广大,今天的内容先集中关注Biacore在新冠中的应用,目前奥密克戎作为全球流行的优势毒株,虽然重症率和病亡率较低,但是感染人数多、传染性强,仍是目前科研工作研究的热点,小编选取了部分CNS主刊的文章一起看看Biacore在新冠相关研究中有哪些亮点的成果。
01结构与分子机制
2022年2月,南方科技大学联合中国科学院微生物所在Cell 上发表题为“Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2 ”的研究论文,首次解析了新冠病毒两个关键突变株Omicron 和Delta RBD与人ACE2的复合物结构,阐明了其相互作用的分子机制。该研究通过Biacore发现,与 Alpha、Beta 和 Gamma 不同, Omicron RBD 与 hACE2 的亲和力和原型RBD与 hACE2的亲和力相似(图1),这可能是由于免疫逃逸和传播性的多重突变的补偿。

图1. Biacore检测hACE2与新冠各突变株RBD的亲和力

2022年8月,中国科学院微生物研究所及北京生命科学研究所在Cell 发表了题为“Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1”的研究论文,该研究通过Biacore发现,hACE2与四个早期 Omicron 亚变体(BA.1、BA.1.1、BA.2 和 BA.3)的RBD的结合亲和力顺序为 BA.1.1>BA.2>BA.3≈BA.1(图2)。

图2. Biacore检测hACE2与新冠各突变株RBD的亲和力

2022年2月,英属哥伦比亚大学等单位在Science发表题为“SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex”的文章,对Omicron突变株的刺突蛋白进行了结构分析。Biacore结果显示,刺突蛋白上的几个突变(R493、S496和R498)使得其与细胞受体ACE2之间产生了新的盐桥和氢键,这些相互作用补偿了其他已知的会降低亲和力的突变(如K417N),导致Omicron和Delta具有相似的ACE2结合亲和力(Omicron:KD=1.4nM;Delta:KD=1.5nM,图3)。

图3,Biacore检测WT/Delta/Omicron与ACE2的亲和力

02免疫逃逸
2022年6月,北京大学谢晓亮课题组在Nature发表题为“BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection” 的文章,报道了 Omicron突变株BA.2.12.1、BA.4和BA.5的受体结合能力与免疫逃避能力。Biacore结果显示,在受体亲和力层面,BA.2.12.1、BA.4和BA.5保留了与BA.2相当的hACE2结合能力(图4,BA.2, KD=10.8nM; BA.2.12.1, KD=12.4nM; BA.4/5, KD=14.4nM,)。但对其免疫谱系进行位点研究后发现, BA.4与BA.5携带的L452R和F486V突变使得其对原有中和抗体均产生明显免疫逃避。

图4,不同类别新冠病毒突变株RBD/Spike蛋白三聚体与hACE2受体亲和力比较

2022年3月,中科院生物物理所、广州医科大学和北京大学合作在Cell 上发表了题为“Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron”的研究论文,该研究对 Omicron Spike的结构分析揭示了奥密克戎感染性和免疫逃避的结构和功能特征。科研人员通过Biacore比较了原始病毒株RBD/奥密克戎RBD与hACE2的亲和力差异,结果显示奥密克戎RBD与hACE2的结合更强,亲和力比原始病毒株RBD强了2.8倍(图5)。

图5,Biacore检测原始病毒株RBD/奥密克戎RBD与hACE2的亲和力

2022年2月,华盛顿大学等单位的研究人员在Science上发表题为“Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement”的文章,解析了Omicron S蛋白的冷冻电镜和x射线晶体结构,确定了奥密克戎突变毒株的刺突蛋白上的精确结构改变,为研究人员设计新的对策来应对可能出现的奥密克戎和其它冠状病毒突变毒株提供了一张蓝图。文中采用Biacore检测抗体与RBD或S蛋白的亲和力(图6),结果显示Wuhan-Hu-1与抗体的亲和力(黑色传感图)均明显高于Omicron与抗体的亲和力(红色传感图)。
图6,Biacore检测抗体与Wuhan-Hu-1及Omicron的亲和力

图6,Biacore检测抗体与Wuhan-Hu-1及Omicron的亲和力

03疫苗设计与接种策略
2022年6月,中国科学院微生物研究所高福院士团队及合作团队在Cell上发表题为“Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2”的文章,报道了新的多价嵌合疫苗。研究人员基于之前的同型二聚体策略,新开发了一种嵌合RBD-dimer疫苗的方法,该方法比同型RBD-dimer疫苗诱导了更广泛的免疫应答。研究中设计了prototype-beta、Delta-Omicron嵌合疫苗,采用Biacore检测了这些嵌合疫苗以及同型RBD-dimer、RBD-monomer与hACE2和5种不同抗体(CB6\CV07-270\C110\S309\CR3022)之间的相互作用(图7)。

图7,Biacore检测嵌合RBD-dimer,同型RBD-dimer以及RBD-monomer与hACE2及抗体的结合

2022年,美国NIH、埃默里大学医学院、莫德纳公司等单位在Cell上发表了两篇关于mRNA疫苗的研究论文,在1月发表的题为“Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung”的文章中,研究人员发现恒河猴接种mRNA-1273疫苗一年后对SARS-CoV-2 Delta的保护与肺部的记忆抗体反应一致,通过Biacore直接检测了mRNA-1273接种后产生的抗体对RBD结合的分布情况(图8B)。

在4月份发表的题为“mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron”的文章中,报道了接种mRNA-1273同源加强针和Omicron-mRNA异源加强针,均能提升对Omicron突变株感染的保护力。研究人员通过Biacore直接检测了加强针免疫后产生的抗体对RBD结合的分布情况(图8A)。

在两篇文章中,研究人员在Biacore上均直接检测了免疫后的血清样品,表明Biacore不仅可以检测纯的样品,还能检测血清等复杂样品。此外Biacore的表位分析模块Epitope binning,可以自动化、可视化显示抗体的分布谱,极大提升了数据分析的效率。

图8, Biacore检测mRNA疫苗接种免疫后产生的抗体对RBD结合的分布情况

图8. Biacore检测mRNA疫苗接种免疫后产生的抗体对RBD结合的分布情况

参考文献:

· Zhou, Tongqing et al. “Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529.” Science (New York, N.Y.) vol. 376,6591 (2022): eabn8897. doi:10.1126/science.abn8897

· Zhao, Xiang et al. “Tuning T cell receptor sensitivity through catch bond engineering.” Science (New York, N.Y.) vol. 376,6589 (2022): eabl5282. doi:10.1126/science.abl5282

· Leggat, David J et al. “Vaccination induces HIV broadly neutralizing antibody precursors in humans.” Science (New York, N.Y.) vol. 378,6623 (2022): eadd6502. doi:10.1126/science.add6502

· Buchanan, Charles J et al. “Pathogen-sugar interactions revealed by universal saturation transfer analysis.” Science (New York, N.Y.) vol. 377,6604 (2022): eabm3125. doi:10.1126/science.abm3125

· Nabel, Katherine G et al. “Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain.” Science (New York, N.Y.) vol. 375,6578 (2022): eabl6251. doi:10.1126/science.abl6251

· McCallum, Matthew et al. “Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement.” Science (New York, N.Y.) vol. 375,6583 (2022): 864-868. doi:10.1126/science.abn8652

· Liu, Kun-Hsiang et al. “NIN-like protein 7 transcription factor is a plant nitrate sensor.” Science (New York, N.Y.) vol. 377,6613 (2022): 1419-1425. doi:10.1126/science.add1104

· Kato, H et al. “Recognition of pathogen-derived sphingolipids in Arabidopsis.” Science (New York, N.Y.) vol. 376,6595 (2022): 857-860. doi:10.1126/science.abn0650

· Wang, Jue et al. “Scaffolding protein functional sites using deep learning.” Science (New York, N.Y.) vol. 377,6604 (2022): 387-394. doi:10.1126/science.abn2100

· Mannar, Dhiraj et al. “SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex.” Science (New York, N.Y.) vol. 375,6582 (2022): 760-764. doi:10.1126/science.abn7760

· Bowen, John E et al. “Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines.” Science (New York, N.Y.) vol. 377,6608 (2022): 890-894. doi:10.1126/science.abq0203

· Marklund, Emil et al. “Sequence specificity in DNA binding is mainly governed by association.” Science (New York, N.Y.) vol. 375,6579 (2022): 442-445. doi:10.1126/science.abg7427

· Reincke, S Momsen et al. “SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies.” Science (New York, N.Y.) vol. 375,6582 (2022): 782-787. doi:10.1126/science.abm5835

· Park, Young-Jun et al. “Imprinted antibody responses against SARS-CoV-2 Omicron sublineages.” Science (New York, N.Y.) vol. 378,6620 (2022): 619-627. doi:10.1126/science.adc9127

· Park, Young-Jun et al. “Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry.” Science (New York, N.Y.) vol. 375,6579 (2022): 449-454. doi:10.1126/science.abm8143

· Hauseman, Zachary J et al. “Structure of the MRAS-SHOC2-PP1C phosphatase complex.” Nature vol. 609,7926 (2022): 416-423. doi:10.1038/s41586-022-05086-1

· Wilson, Steven C et al. “Organizing structural principles of the IL-17 ligand-receptor axis.” Nature vol. 609,7927 (2022): 622-629. doi:10.1038/s41586-022-05116-y

· Lee, Jeong Hyun et al. “Long-primed germinal centres with enduring affinity maturation and clonal migration.” Nature vol. 609,7929 (2022): 998-1004. doi:10.1038/s41586-022-05216-9

· Marei, Hadir et al. “Antibody targeting of E3 ubiquitin ligases for receptor degradation.” Nature vol. 610,7930 (2022): 182-189. doi:10.1038/s41586-022-05235-6

· Ma, Teng et al. “Low-dose metformin targets the lysosomal AMPK pathway through PEN2.” Nature vol. 603,7899 (2022): 159-165. doi:10.1038/s41586-022-04431-8

· Cao, Yunlong et al. “BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.” Nature vol. 608,7923 (2022): 593-602. doi:10.1038/s41586-022-04980-y

· Yang, Zhisen et al. “Structural insights into auxin recognition and efflux by Arabidopsis PIN1.” Nature vol. 609,7927 (2022): 611-615. doi:10.1038/s41586-022-05143-9

· Su, Nannan et al. “Structures and mechanisms of the Arabidopsis auxin transporter PIN3.” Nature vol. 609,7927 (2022): 616-621. doi:10.1038/s41586-022-05142-w

· Eichel, Kelsie et al. “Endocytosis in the axon initial segment maintains neuronal polarity.” Nature vol. 609,7925 (2022): 128-135. doi:10.1038/s41586-022-05074-5

· Wang, Qian et al. “Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5.” Nature vol. 608,7923 (2022): 603-608. doi:10.1038/s41586-022-05053-w

· Hochheiser, Inga V et al. “Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3.” Nature vol. 604,7904 (2022): 184-189. doi:10.1038/s41586-022-04467-w

· Shilts, Jarrod et al. “A physical wiring diagram for the human immune system.” Nature vol. 608,7922 (2022): 397-404. doi:10.1038/s41586-022-05028-x

· Liau, Nicholas P D et al. “Structural basis for SHOC2 modulation of RAS signalling.” Nature vol. 609,7926 (2022): 400-407. doi:10.1038/s41586-022-04838-3

· Liu, Zunyong et al. “Phytocytokine signalling reopens stomata in plant immunity and water loss.” Nature vol. 605,7909 (2022): 332-339. doi:10.1038/s41586-022-04684-3

· Kim, Wooseob et al. “Germinal centre-driven maturation of B cell response to mRNA vaccination.” Nature vol. 604,7904 (2022): 141-145. doi:10.1038/s41586-022-04527-1

· Hu, Chun et al. “Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias.” Nature vol. 602,7897 (2022): 518-522. doi:10.1038/s41586-021-04393-3

· Paik, Donggi et al. “Human gut bacteria produce ΤΗ17-modulating bile acid metabolites.” Nature vol. 603,7903 (2022): 907-912. doi:10.1038/s41586-022-04480-z

· Kwon, Diana. “Light-based sensors set to revolutionize on-site testing.” Nature vol. 607,7920 (2022): 834-836. doi:10.1038/d41586-022-02043-w

· Seung, Edward et al. “A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells.” Nature vol. 603,7900 (2022): 328-334. doi:10.1038/s41586-022-04439-0

· Yang, X., Garner, L.I., Zvyagin, I.V. et al. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 612, 771–777 (2022). https://doi.org/10.1038/s41586-022-05501-7

· Xu, Kun et al. “Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2.” Cell vol. 185,13 (2022): 2265-2278.e14. doi:10.1016/j.cell.2022.04.029

· Li, Linjie et al. “Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1.” Cell vol. 185,16 (2022): 2952-2960.e10. doi:10.1016/j.cell.2022.06.023

· Tuekprakhon, Aekkachai et al. “Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.” Cell vol. 185,14 (2022): 2422-2433.e13. doi:10.1016/j.cell.2022.06.005

· Han, Pengcheng et al. “Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2.” Cell vol. 185,4 (2022): 630-640.e10. doi:10.1016/j.cell.2022.01.001

· Nutalai, Rungtiwa et al. “Potent cross-reactive antibodies following Omicron breakthrough in vaccinees.” Cell vol. 185,12 (2022): 2116-2131.e18. doi:10.1016/j.cell.2022.05.014

· Janetzko, John et al. “Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics.” Cell vol. 185,24 (2022): 4560-4573.e19. doi:10.1016/j.cell.2022.10.018

· Gagne, Matthew et al. “mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron.” Cell vol. 185,9 (2022): 1556-1571.e18. doi:10.1016/j.cell.2022.03.038

· Gagne, Matthew et al. “Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung.” Cell vol. 185,1 (2022): 113-130.e15. doi:10.1016/j.cell.2021.12.002

· Cui, Zhen et al. “Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron.” Cell vol. 185,5 (2022): 860-871.e13. doi:10.1016/j.cell.2022.01.019

· Dejnirattisai, Wanwisa et al. “SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses.” Cell vol. 185,3 (2022): 467-484.e15. doi:10.1016/j.cell.2021.12.046

· Akkermans, Onno et al. “GPC3-Unc5 receptor complex structure and role in cell migration.” Cell vol. 185,21 (2022): 3931-3949.e26. doi:10.1016/j.cell.2022.09.025

· Griffin, Matthew E, and Linda C Hsieh-Wilson. “Tools for mammalian glycoscience research.” Cell vol. 185,15 (2022): 2657-2677. doi:10.1016/j.cell.2022.06.016

· Wang, Qian et al. “Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants.” Cell, S0092-8674(22)01531-8. 14 Dec. 2022.